

Circuit Element	Voltage Drop
Inductor	$L\frac{dI}{dt}$
Resistor	RI
Capacitor	$\frac{1}{C}Q$

Here we examine an RLC electric circuit which consists of

- 1. A **resistor** with a resistance of *R* ohms.
- 2. An inductor with an inductance of L henries, and
- 3. A capacitor with a capacitance of C farads.

These objects are in a series after the electromotive force (such as a battery of generator) that supplies a voltage of E(t) volts at time t. If the switch is closed, this results in a current of I(t) amperes in the circuit and a charge of Q(t) coulombs on the capacitor at time t. The relation between Q and I is given by

$$\frac{dQ}{dt} = I(t). (1)$$

According to elementary properties of electricity, the **voltage drops** across the three circuit elements are shown above. With the help of Kirchoff's Law we arrive at the differential equation

$$L\frac{dI}{dt} + RI + \frac{1}{C}Q = E(t). \tag{2}$$

Substituting (2) into (1) we get the equation

$$LQ'' + RQ' + \frac{1}{C}Q = E(t)$$
(3)

for the charge Q, or more commonly,

$$LI'' + RI' + \frac{1}{C}I = E'(t) \tag{4}$$

for the current I.

Question 1. Does this look familiar to the mass-spring-dashpot mechanical system

$$mx'' + cx' + kx = F(t)$$

from Section 3.4 and 3.6? What transformations would you make to create a mechanical-electrical analogy?

Position (x) = Charge (Q)/ Mass (m)= Inductance (L) Current(I) Damping Constant (c) = Resitance (R)

Spring, Constant (K) = Recipical Capacitance (VC) Force (F) = Electrometive or(E')

Question 2. Why would this analogy be useful in practice?

When it is expensive, impractical or dangerous to measure Analog Computers tested models for first nuclear reactors.

Example 1. Consider an RLC circuit with R = 50 ohms (Ω) , L = 0.1henry (H), and $C = 5 \times 10^{-4}$ farad (F). At time t = 0, when both I(0) and E(0) are zero, the circuit is connected to a 110-V, 60-Hz alternating current

generator. Find the current in the circuit and the time lag of the steady

periodic current behind the voltage.

60 Hz means
$$w = (2\pi)(60) \text{ rad/s} \approx 377 \text{ rad/s}$$

So $E(t) = 110 \sin 377t$. Then
$$(0.1)I'' + SOI' + 2000I = 377.110 \cos 377t$$
.

Thus
$$I_p = \frac{110}{59.58} \cos(377t - 0.575)$$

 $I_c = (-0.307)e^{44t} + (1.311)e^{456t}$